Allogeneic blood transfusion is accompanied by immunomodulatory effects, notably immune suppression.

Clinical evidence suggests the immunosuppressive effects of transfusion may contribute to an increased incidence of tumor recurrence and infectious complications in surgical patients; however, the subject remains controversial.

Most of the immunomodulatory effects of transfusion demonstrable in vitro are mediated by white blood cells or soluble products derived from them. Leukocyte-derived factors include soluble Fasligand (sFasL), human leukocyte antigens of Class I and II (sHLA-I, -II) as well as pro-inflammatory cytokines, such as tumor necrosis factor (TNF-α).

Additionally, some components of the complement cascade can attenuate immune responsiveness. The levels of these constituents present in component blood products, and their immunosuppressive potential, appear to vary with the type of blood product, its preparation and storage conditions and the volume transfused.

These confounding influences, generally not reported in clinical studies, may explain the failure to achieve consensus regarding the clinical relevance of transfusion related immunosuppression and the reported benefit of leukocyte reduction.

Assessing an immunosuppressive potential of blood products serves as an attempt toward a more complete characterization, and awareness, of these effects.

La trasfusione di sangue allogenico si accompagna a immunomodulazione, in particolare a immunosoppressione. Evidenze cliniche indicano che gli effetti immunosoppressori possono contribuire, in pazienti chirurgici, a una incidenza maggiore di ricadute neoplastiche e di complicazioni infettive.

L’argomento resta, tuttavia, controverso.

La maggior parte degli effetti immunomodulatori della trasfusione dimostrabili in vitro è mediata da leucociti o da prodotti solubili di derivazione leuccitaria. Fra i prodotti solubili sono compresi il ligando della proteina di superficie Fas (sFasL), gli antigeni HLA di classe I e II (sHLA-I ed sHLA-II), così come alcune citochine proinfiammatorie, quali il TNF-α (Tumor necrosis factor-alfa). Inoltre, alcune componenti della cascata complementare possono ridurre la risposta immune.

Il livello di queste sostanze presenti negli emocomponenti e il loro potenziale immunosoppressivo variano con il tipo di emocomponente, con le modalità della sua preparazione e conservazione e con la quantità trasfusa.

Queste differenti e perturbanti influenze, solitamente non riportate nelle pubblicazioni, possono spiegare perché non si è ancora raggiunto un universale consenso sulla rilevanza clinica della immunosoppressione associata alla trasfusione e sugli asseriti benefici ottenibili con la leucoriduzione.

Stimare il potenziale immunosoppressivo degli emocomponenti può servire a una più approfondita caratterizzazione di questi prodotti e a una maggiore conoscenza sul loro possibile impatto clinico.

Individuare il potenziale immunosoppressivo degli emocomponenti trasfusi può offrire una base per controllare tali variabili nei futuri studi clinici.

Dr. Girolamo A. Ortolano
Scientific and Laboratory Services
Pall Corporation
2200 Northern Boulevard
East Hills, NY 11548 - USA
constituents and their potential clinical impact.

Characterization of the immnosuppressive potential of transfused blood products may provide a basis for physical control of these variables in future clinical studies.

**Controversy over the transfusion effect**

Clinical studies confirm the association between allogeneic blood transfusion and their immunomodulatory effects which enhance the rate of successful renal engraftment in patients receiving cadaveric kidney transplants\(^1\)^-\(^3\), a phenomenon known as the "transfusion effect".

The observation remains germane as combined therapies of transfusion and immunosuppressive agents continue to be studied\(^4\). Transfusions have long been associated with an increased risk of post-operative infections\(^5\)^-\(^11\).

Although a substantial body of literature suggests infectious complications increase in patients receiving multiple transfusions, the effect may occur following a single transfusion\(^12\).

The transfusion effect is thought to be mediated by leukocytes\(^13\) and soluble products derived from them.

Leukocyte reduction of components has been reported to ameliorate this effect in colorectal surgery patients\(^14\)^-\(^16\). Similar observations are reported in cardiac surgery\(^17\)^,\(^18\) and extensive reviews on transfusion-related immune suppression (TRIM) abound\(^19\)^-\(^24\).

The prevailing view is that transfusion and infection are at least temporally, and may be causally, related. Transfusion may also predispose patients to an increased risk of tumor recurrence following solid organ surgery\(^25\)^-\(^27\).

The beneficial effect of leukocyte reduction in tumor recurrence has been challenged by some investigators\(^28\)^-\(^32\). The controversy surrounding the role of leukocytes in post-operative infectious complications and tumor recurrence in surgical patients is important. It is well recognized that infectious complications are life-threatening and costly to manage\(^33\)^-\(^36\). The resolution of the controversy would provide continued support for the current trend to provide leukocyte reduced blood products for all patients\(^37\)^,\(^38\). One approach to resolve this controversy may reside in current advances in

**Controversie su "effetto trasfusione"**

Studi clinici confermano il legame fra trasfusione di sangue allogenico ed effetti immunomodulanti che determinano un aumento della percentuale di attecchimento di trapianti renali da cadaveri\(^1\)^-\(^3\), fenomeno noto come "effetto trasfusione". Questa osservazione clinica è confacente al fatto che la terapia combinata di farmaci immunosoppressori e di trasfusione rimane oggetto di investigazione scientifica\(^4\).

Le trasfusioni sono state associate, da molto tempo, a un maggior rischio di infezioni postoperatorie\(^5\)^-\(^11\). Benché autorevoli dati della letteratura sostengano che le complicanze infettive aumentano nei pazienti politrasfusi, l'effetto può verificarsi anche dopo una singola trasfusione\(^12\).

Si ritiene che l'effetto trasfusione sia mediato dai leucociti\(^13\) e dai prodotti solubili che da loro derivano.

E, infatti, viene riportato che la leucoriduzione diminuisce gli effetti negativi nei pazienti chirurgici affetti da patologia colorettale\(^14\)^-\(^16\). Simili osservazioni sono state riportate anche in cardiochirurgia\(^17\)^,\(^18\) e sono numerose le rassegne sugli effetti immunosoppressivi della trasfusione\(^19\)^-\(^24\).

Il punto di vista predominante è che trasfusione e infezione sono, almeno temporalmente, ma forse causalmente, correlate fra loro.

La trasfusione può anche predisporre a un maggior rischio di ricaduta neoplastica, dopo interventi chirurgici in organi solidi\(^25\)^-\(^27\). L'effetto benefico della leucoriduzione sulle ricadute neoplastiche è stato contestato da alcuni Autori\(^28\)^-\(^32\).

La controversia relativa al ruolo dei leucociti nelle infezioni postoperatorie e nelle ricadute neoplastiche in pazienti chirurgici è importante.

È ben noto come le complicanze infettive possano essere fatali e la loro gestione costosa\(^33\)^-\(^36\). Risolvere la controversia potrebbe dare supporto all'odierda tendenza di trasfondere tutti i pazienti con emocomponenti leucodepleti\(^37\)^,\(^38\).

Un approccio scientifico in grado di risolvere la controversia potrebbe derivare dai più recenti progressi in immunobiologia trasfusionale\(^22\).

Parecchie sono state le ipotesi avanzate per spiegare l'effetto trasfusione\(^39\)^-\(^42\). Esse riguardano: apoptosi leucocitaria, anergia, soppressione delle attività delle cellule natural killer (cellule NK), polarizzazione delle cellule Th2 e delle relative
transfusion immunobiology\textsuperscript{22}. Several hypotheses have been provided to explain the transfusion effect (reviewed in \textsuperscript{39-42}) including leukocyte apoptosis, anergy, natural killer cell (NK-cell) suppression, Th2 citochine, microchimerismo. Questi meccanismi vengono schematizzati in figura 1, mentre la pertinente legenda indica gli esempi di sostanze cellulari e solubili rinvenute negli emocomponenti e spiega come...
cell and cytokine polarization, and microchimerism. These mechanisms are summarized in Figure 1 and examples of soluble and cellular constituents found in blood components and how they act within the framework of the hypotheses are explained in the legend.

Soluble mediators of the transfusion effect

Complement proteins are well-characterized mediators of the innate immune response as well as important contributors to adaptive or acquired immune mechanisms. Complement deficiency studies have revealed the importance of these proteins in maintaining the integrity of the immune system. Although they are not generally perceived as mediators of transfusion-associated immunosuppression, there are data showing complement activation fragments may suppress secondary antibody response, modulate pro-inflammatory cytokine levels and diminish NK-cell activity.

The smaller activation fragment of the third component of complement, i.e., C3a, and its primary metabolite, C3a_desArg, has been shown to elicit immunosuppressive effects in vitro. In one study, lymphocytes derived from animals previously immunized to nitrophenols showed a dose-dependent attenuation of antibody-mediated lysis of nitrophenol-conjugated sheep red blood cells in vitro with either C3a or its metabolite C3a_desArg.

Another study reported that C3a receptor occupancy (C3a or C3a_desArg) on stimulated B-cells results in attenuation of the release of humoral mediators of inflammation including immunoglobulins, tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6. Yet another study showed C3a, and its metabolite, effectively inhibit NK-cell activity in a dose-dependent manner using a classic in vitro model of Cr51 release from pre-loaded tumor cells that serve as a target for NK-cell activity.

Concentrations required to achieve these effects were in the range of micrograms per mL. C3a is normally present in the circulation at concentrations approximating 0.2 micrograms per mL but can rise to levels approximating those seen to have immunosuppressive effects in vitro.

Plasma-rich components contain progressively increasing levels of C3a with continued storage.

Gli emocomponenti ricchi di plasma contengono livelli di C3a che aumentano progressivamente con i tempi di conservazione. La concentrazione può
time\textsuperscript{58-61}. Concentrations can range from 10-40 times normal circulating levels. Single donor or apheresis platelets show some of the highest levels\textsuperscript{62-64}. Packed Red Blood Cells (pRBCs) have less plasma than platelets and therefore contain less C3a. Random donor platelets contain less C3a than most apheresis preparations. The longer platelets are stored, the greater the C3a level. If C3a is a determinant of the immunosuppressive effect of transfusion, we would expect it to prevail when older apheresis platelets are transfused.

Single donor blood can be leukoreduced with some apheresis machines, but that would not be expected to alter the supra-physiologic levels of C3a. Random donor and some apheresis platelets may be leukoreduced with filters and not all filters have the same effect on complement. Some filters remove C3a while others increase C3a levels\textsuperscript{65-68}. The immunosuppressive effect of transfusing C3a to patients as unintended products of the production of blood components has not been studied and warrants consideration.

**Soluble Human Leukocyte Antigens** (sHLA), free or associated with \(\beta_2\)-microglobulin, are elevated in the sera of patients with high levels of cellular destruction such as occurs in autoimmune disease, viral infection, acute graft-versus-host disease (GvHD), and allograft rejection\textsuperscript{69-72}. Class I and II sHLA are also present in various blood components and levels are influenced by the type of blood product, leukocyte reduction status and storage conditions\textsuperscript{73-78}. sHLA may be associated with the transfusion effect as illustrated in Figure 1. Studies show that sHLA-I and sHLA-II have immunosuppressive activity \textit{in vitro}\textsuperscript{69-71}. The highest degree of immunomodulatory activity was found in component supernatants that contain high levels of leukocytes (1-3x10\(^9\) cells/unit) in random donor platelets and nonleukocyte reduced packed red blood cells (pRBCs) stored for 30 days\textsuperscript{79}.

\textit{In vitro} studies indicate that sHLA-I may modulate immune function by binding to its natural ligand (CD8) and inhibiting cytotoxic T lymphocyte (CTL) function through receptor blockade\textsuperscript{79}. Blockade prevents the interaction between CTLs and their target cells (such as viral infected cells with enhanced expression of HLA-I on their surface). Activated CD8+ cells (CTLs and NK-cells) can bind sHLA-I and secrete sFasL resulting in apoptosis\textsuperscript{80-83}. Furthermore, apoptosis is induced in far augmentare da 10 a 40 volte il livello riscontrato normalmente in circolo. I concentrati piastrinici (CP) da singolo donatore o da aferesi mostrano alcuni dei livelli più alti\textsuperscript{62-64}. I concentrati eritrocitari (CE) contengono meno plasma di quelli piastrinici e, conseguentemente, contengono meno C3a. I CP da donatori \textit{random} ne contengono meno rispetto alla maggioranza di quelli da aferesi. Più a lungo vengono conservati i CP, maggiore è il loro livello di C3a. Se effettivamente C3a è determinante ai fini dell’effetto immunosoppressivo, dovremo aspettarci che tale effetto sia più rilevante quando trasfondiamo i CP da aferesi più vecchi.

I CP da singolo donatore possono essere leucoridotti utilizzando alcuni separatori cellulari, ma non ci si può aspettare che tale procedura possa modificare livelli eccessivi di C3a. Si possono leucoridurre, mediante filtrazione, CP da donatori \textit{random} o da aferesi ma non tutti i filtri ottengono gli stessi risultati per quanto riguarda il complemento. Alcuni filtri rimuovono il C3a, mentre altri ne aumentano il livello\textsuperscript{65-68}. Gli effetti immunosoppressivi sul paziente determinati da C3a, quale prodotto inatteso (e indesiderato) nella produzione di emocomponenti, non sono ancora stati studiati in profondità e meritano notevole considerazione.

Gli **antigeni HLA solubili** (sHLA), associati o meno alla \(\beta_2\)-microglobulina, si ritrovano in elevate quantità nei sieri di pazienti che presentano un alto tasso di distruzione cellulare, come avviene nelle malattie autoimmuni, nelle infezioni virali, nella GvHD e nel rigetto di allotrasplantati\textsuperscript{69-72}. Antigeni solubili di I e II classe sono presenti anche in molti emocomponenti e il loro livello è influenzato dal tipo di prodotto, dallo stato di leucodeplezione e dalle condizioni di conservazione\textsuperscript{73-78}. Gli sHLA possono determinare l’effetto trasfusion, come viene illustrato nella figura 1. Studi dimostrano che sHLA-I ed sHLA-II svolgono un’attività immunosoppressiva \textit{in vitro}\textsuperscript{69-71}. Il più alto grado di attività immunomodulante è stato riscontrato nel supernatante di emocomponenti con maggiore quantità di leucociti (da 1 a 3x10\(^9\)/unità) in CP da donatori \textit{random} e in CE non leucodepleti, conservati per 30 giorni\textsuperscript{79}.

Studi \textit{in vitro} indicano che sHLA-I possono modulare la funzionalità immunitaria unendosi al loro naturale ligando (CD8) e inibendo la funzione dei linfociti T citotossici (CTL), attraverso un blocco dei recettori\textsuperscript{79}. Il blocco impedisce la interazione fra CTL e cellule bersaglio (quali cellule infettate da virus.
phytohemagglutinin-activated CTLs by sHLA-I purified from the sera of healthy donors and this is inhibited by competing antibody to CD8 or Fas receptors, demonstrating that apoptosis is Fas-dependent. Also, sHLA-I induced apoptosis was observed with CD8+ NK-cells through a Fas-dependent mechanism.

A concentration of 2.5µg/mL of sHLA-I was shown to induce apoptosis in 50% of CD8+ cells. This approximates the concentration shown to be present in non-leukoreduced pRBCs stored for 30 days and even 5-day old pRBCs contain sHLA-I levels 10-fold higher than found in serum suggesting that sHLA-I may play a role in mediated the transfusion effect.

**Soluble HLA-II** may bind to its natural ligand (CD4+) on T-helper (Th) cells and induce non-responsiveness or anergy of Th cells through receptor blockade derived through cell-cell interactions between Th and antigen presenting cells (APCs) that express HLA-II. Th cells become non-responsive to immune challenge. This non-responsiveness can sometimes be reversed by providing co-stimulation signals such as IL-2.

It is possible that sub-optimal stimulation of T-cell receptor (TcR) may occur through receptor blockade with sHLA. A characteristic of naive CD4+ T-cells is that low levels of TcR stimulation can promote the production of small amounts of IL-4. This cytokine is critical in determining the development of Th2 cells. When threshold IL-4 levels are attained, as may occur in the transfusion of high concentrations of soluble antigen, the immune response is polarized toward the Th2 phenotype. This scenario would favour the hypothesis that the transfusion effect is associated with Th2/Th1 cellular imbalance and Th2 cytokine polarization.

Additionally, sHLA-I and sHLA-II can be presented to CD4+ cells by "indirect presentation" through phagocytosis and HLA class II-restricted presentation by professional APCs, the result of which could be either activation or tolerance.

**Membrane bound FasL and Soluble FasL (sFasL)** signaling pathways may play a significant role in the induction of immunologic tolerance. T-cell apoptosis induced by Fas/FasL binding (either sFasL or FasL on the surface of apoptotic cells) serves to down-regulate the immune response to antigen. The Fas/FasL signaling pathway may con un'espressione aumentata degli antigeni HLA-I sulla loro superficie. Cellule CD8-positive (CD8+), quali le CTL e le NK, possono legare gli antigeni HLA-I e secerne sFasL, determinando la loro stessa apoptosi. Inoltre, apoptosi viene indotta da sHLA-I purificati, provenienti da sieri di donatori sani, in CTL attivate da fitoemoagglutinitina, mentre viene inibita dagli anticorpi diretti contro i recettori di CD8 o di Fas, con ciò dimostrandosi che essa è Fas-dipendente. Ancora, apoptosi indotta da sHLA-I è stata osservata con cellule NK CD8+, attraverso un meccanismo Fas-dipendente.

Si è dimostrato che una concentrazione di 2,5µg/mL di sHLA-I induce apoptosi nel 50% delle cellule CD8-positive. Questa concentrazione è assai vicina a quella presente in CE non leucoridotti e conservati per 30 giorni e anche CE conservati per 5 giorni contengono un livello di sHLA-I 10 volte maggiore di quello ritrovato nel siero (dei donatori), con ciò suggerendo che gli antigeni HLA solubili di I classe possono giocare un ruolo preciso nel mediare l'effetto trasfusione.

Gli antigeni solubili HLA-II possono associarsi al loro naturale ligando (CD4) sulle cellule Th (T-helper) e indurre una mancata risposta o un'anergia delle stesse Th, attraverso il blocco dei recettori, come illustrato in figura 1. In assenza di segnali di co-stimolazione, derivati dalla interazione cellula-cellula fra Th e cellule presentanti l'antigene (APC) che esprimono gli antigeni HLA di II classe, le cellule Th divengono non reattive agli stimoli antigenici. Questa mancata reattività può talora essere invertita impiegando segnali co-stimolatori come IL-2.

È possibile che si determini una stimolazione sub-ottimale del recettore delle cellule T (TcR), mediante il blocco del recettore tramite gli sHLA. Una caratteristica delle cellule T CD4+ vergini (non ancora stimulate) è che una bassa stimolazione di TcR può promuovere la produzione di piccole quantità di IL-4. Questa citochina è critica nel determinare lo sviluppo delle cellule Th2. Quando si raggiungono livelli-soglia di IL-4, come può avvenire in seguito a trasfusioni di prodotti ad alta concentrazione di antigeni solubili, la risposta immune viene polarizzata contro il fenotipo Th2. Questo scenario sembrerebbe favorire l'ipotesi che l'effetto trasfusione sia associato a uno squilibrio del rapporto Th2/Th1 e con una polarizzazione delle citochine di derivazione Th2.
contribute to the transfusion effect through similar mechanisms. FasL expressed on the surface of apoptotic neutrophils, or sFasL released from apoptotic cells undergoing secondary necrosis, can bind to Fas expressed on immune-competent cells (including neutrophils, monocytes, activated B-, T-cells and NK-cells) and induce apoptosis as shown in Figure 2. The concentration of sFasL required to elicit 50% of the cells to undergo apoptosis is approximately 50ng/mL in vitro. A significant concentration of sFasL has been shown to be present in the supernatant of stored blood components.

Figure 2 - Fas/FasL-dependent pathways of apoptosis. Green arrows represent activation, red arrows represent transfusion, black arrows represent pathways, ligand binding or cell activity. Dark yellow bar represents the cell membrane of immune cells expressing Fas and light yellow its cytoplasm. Transfusion-derived apoptotic neutrophils can: 1. undergo secondary necrosis causing the release of FasL into the blood resulting in soluble FasL (sFasL) or, 2. express FasL on the neutrophil membrane. This leads to sFasL or FasL binding to Fas receptors expressed by immune cells. Either pathway 1 or 2, or sFasL transfused from the donor bag directly (pathway 3) results in activation of caspase-8. The subsequent caspase cascade results in activation of DNAses that degrade DNA leading to apoptosis of immune cells. In a separate pathway, transfusion-derived TNF-α binding to its receptor TNF-R1 mediates caspase 8 activation. The TNF-α may be derived from transfused soluble TNF-α or mononuclear cells. Hence, transfusion-derived apoptotic neutrophils may cause immune cell apoptosis leading to immunosuppression; this can be mitigated by pre-storage leukoreduction.

Blood Transf 2003; 1: 47-64

Anche i segnali indotti dal FasL solubile (sFasL) e dal FasL associato alla membrana possono giocare un ruolo nell'induzione di una tolleranza immunologica. L'apoptosi delle cellule T indotta dal legame Fas/FasL (sia sFasL che FasL sulla superficie delle cellule apoptotiche) serve a
Levels range from 468ng/mL following 5 days of storage up to 1.9µg/mL at 30 days of storage in non-leukoreduced pRBCs. The source of sFasL is predominantly apoptotic leukocytes, the majority of which are neutrophils.

In contrast, leukoreduced blood products prepared within 3 hours of collection show levels of sFasL of <1ng/mL following 30 days of storage. There are no data for the levels of sFasL in blood products leukoreduced between 3 and 24 hours from the time of collection, a common practice in Europe and elsewhere in the world. A consequence of destroying immune cells understandably translates to compromised immune function.

This is evidenced by mixed lymphocyte reaction (MLR) that was inhibited by the supernatant (containing sFasL, sHLA-I) from both allogeneic and autologous pRBCs; an effect that was partially reversed by immuno-depletion of sFasL. Pre-storage leukocyte reduction within 3 hours of blood collection completely reversed the inhibitory effect on the MLR.

**Cellular mediators of the transfusion effect**

*Immunocompetent mononuclear cells* vary in blood products as a function of the type of blood product, storage and processing conditions as well as donor characteristics.

Blood products that contain live immunocompetent cells may play a role in the transfusion effect by inducing microchimerism. This phenomenon has been demonstrated in recipients of solid organ allografts, as well as those patients receiving multiple transfusions.

The mechanism by which microchimerism induces immunosuppression may be related to the persistence of donor leukocytes in the recipient and the subsequent deletion or induction of anergy in the recipient of donor-reactive cells.

Microchimerism may be more relevant to long-term allograft survival than generalized immunosuppression, however, the short term effect of deleting or inducing anergy of donor immune cells could contribute to increased incidence of postoperative infection or tumor recurrence.

*Apoptotic cells.* Stored blood products have been shown to contain varying degrees of apoptotic cells in vitro. In contrast to live cells, apoptotic cells are not eliminated by phagocytosis.

Mediatori cellulari dell’effetto trasfusione

La presenza di cellule mononucleate immunocompetenti è variabile negli emocomponenti, in rapporto diretto con il tipo di prodotto, con le condizioni di conservazione e di lavorazione così come con le caratteristiche del donatore. Emocomponenti che contengono cellule immunocompetenti vitali possono giocare un ruolo importante nell’effetto trasfusione, inducendo microchimerismo. Tale fenomeno è stato dimostrato in riceventi trapianti di organi solidi.
The rate of apoptosis in stored pRBCs is most rapid in the first 7 days of storage\textsuperscript{76,98} but continues to increase through 14 days, after which most cells have either undergone apoptosis (70%) or have become anergic to \textit{in vitro} stimulation\textsuperscript{73}.

In platelet concentrates, apoptosis is also progressive, and may reach levels in excess of 60% by day four of storage\textsuperscript{107}. Apoptotic cells have been shown to exert immunosuppressive effects on macrophages\textsuperscript{108-110} characterized by the inhibition of cytokine (IL-1, IL-12, TNF-\(\alpha\)) synthesis and an increased production of IL-10. The net result of this cytokine profile is inhibition of both Th1 and Th2 responses.

Reduced macrophage IL-12 production was associated with increased patient susceptibility to post-operative infection\textsuperscript{111}. \textit{In vitro} studies showed macrophage phagocytosis of apoptotic cells reduced efficacy of clearance of \textit{Trypanosoma cruzi} parasitic infection\textsuperscript{109}.

Macrophage phagocytosis of apoptotic cells has been shown to cause the release of sFasL and induce the apoptosis of bystander leukocytes\textsuperscript{110}.

In animal studies, injection of apoptotic cells enhanced the bone marrow survival and engraftment in major histocompatibility complex (MHC) incompatible mice\textsuperscript{112}.

The presence of a high fraction of apoptotic cells in transfusion products, as occurs with non-leukoreduced stored pRBCs or platelet concentrate, would be expected to contribute to the transfusion effect to reduce macrophage function and host ability to clear foreign antigen through phagocytic mechanisms.

\textbf{Leukocytes} appear to be the component of fresh blood that confers the greatest degree of immunosuppressive effect.

Gianotti and co-workers\textsuperscript{13} infused leukocytes, red cells or platelet-rich plasma prepared from C3H/HeJ mice into Balb/c mice five days prior to inducing 20% burns with \textit{Escherichia coli} gavage to induce sepsis. Viability of bacteria and mortality was greatest in the mice transfused with allogeneic leukocytes.

\textbf{Apoptotic neutrophils} from non-leukoreduced stored blood may directly mediate systemic inflammatory effects independent of an immunosuppression consequent to T cell apoptosis.

Apoptotic neutrophils expressing FasL may directly interact with parenchymal cells of the heart, lung and liver that express Fas\textsuperscript{113}. così come in politrasfusi\textsuperscript{103}. Il meccanismo attraverso il quale il microchimerismo induce immunosoppressione può essere legato alla persistenza di leucociti del donatore nel ricevente e alla conseguente delezione o induzione di anergia in chi riceve cellule reattive a partenza dal donatore\textsuperscript{104,105}. Il microchimerismo può essere molto più pertinente per la sopravvivenza a lungo termine del trapianto piuttosto che per l'immunosoppressione; tuttavia, gli effetti a breve termine sulla delezione o sull'induzione di anergia da parte delle cellule immunocompetenti del donatore potrebbero contribuire a aumentare l'incidenza di infezioni o di ricadute neoplastiche nel periodo postoperatorio.

È stato dimostrato che gli emocomponenti contengono varie quantità di \textit{cellule apoptotiche}\textsuperscript{76,98,106,107}. Il ritmo di apoptosi nei CE è maggiore nei primi 7 giorni di conservazione\textsuperscript{76,98} ma continua ad aumentare sino al 14\textdegree strategyical day of storage\textsuperscript{107} e qui di che la maggioranza (~70%) delle cellule o sono soggiacciate all'apoptosi o sono divenute anergiche alla stimolazione \textit{in vitro}\textsuperscript{73}. Anche nei CP l'apoptosi si instaura progressivamente e può raggiungere livelli che superano il 60% della popolazione cellulare dopo 4 giorni di conservazione\textsuperscript{107}. Si è provato che le cellule apoptotiche esercitano effetti immunosoppressivi sui macrofagi\textsuperscript{108-110}; questi effetti sono caratterizzati dalla inibizione della sintesi di alcune citochine (IL-1, IL-12, TNF-\(\alpha\)) e da un aumento della produzione di IL-10. La risultante che consegue a questo profilo delle citochine è una inibizione delle risposte di Th1 e di Th2. La ridotta produzione di IL-12 da parte dei macrofagi è stata correlata a una aumentata suscettibilità dei pazienti alle infezioni postoperatorie\textsuperscript{111}. Studi \textit{in vitro} hanno dimostrato che la fagocitosi di cellule apoptotiche da parte dei macrofagi riduce l'eliminazione del parassita in corso di infezione da \textit{Trypanosoma cruzi}\textsuperscript{109}, causa la liberazione di sFasL e induce apoptosi sui leucociti presenti\textsuperscript{110}. In modelli animali, l'iniezione di cellule apoptotiche favorisce, in topi incompatibili per il complesso maggiore di istocompatibilità (MHC), l'atteggiamento e la sopravvivenza dei trapianti di midollo osseo\textsuperscript{112}. La presenza di un alto numero di cellule apoptotiche negli emocomponenti, come avviene per CE o CP non leucodepleti, potrebbe contribuire all'effetto trasfusione, riducendo la funzione dei macrofagi e la capacità, da parte del ricevente, di eliminare gli antigeni estranei attraverso la fagocitosi.
This could account for multiple organ failure that often attends high volume transfusions as in trauma114,115. This may also explain the association of pRBC transfusions with an increased incidence of acute lung injury116 and the development of post-bypass pneumonia associated with the increased length of storage time of pRBCs117.

**Predictive clinical effects with leukocyte reduction methods**

Blood products and storage conditions affect immune status by leukocytes and leukocyte-derived soluble factors which act as mediators of transfusion-associated immunosuppression.

Table I summarizes the work of several Authors in a semi-quantitative manner to facilitate the analyses of the differences that exist between blood products based upon storage conditions, leukocyte reduction status and immune suppressive potential.

The immune suppressive potential was derived from the *in vitro* data showing suppression of the MLR, cytotoxicity assays and induction of apoptosis. What is evident is that there are considerable gaps in our knowledge of the levels of immunosuppressive substances present in the various blood products as a function of preparation and storage conditions.

As expected, stored blood products that have not been leukoreduced tend to have high concentrations of apoptotic cells, as well as sFasL, sHLA-I and sHLA-II derived from them and this is translated into an increase in the *in vitro* immunosuppressive potential defined by decreased responsiveness to MLR76. There is a steady increase in apoptotic cells as a function of storage and by 30 days as many as 70% of the cells have become apoptotic and nonresponsive in MLR76.

Similar results have been demonstrated for stored platelet concentrates with 40-50% of the cells being apoptotic by 5 days storage107. While *in vitro* assays of immunosuppression did not accompany these studies, the predicted outcome may be similar to the results observed with pRBCs.

The presence of high levels of apoptotic cells may be predictive of the degree of immunosuppression.

As with apoptosis, soluble constituents derived

**Presumibili effetti clinici della leucoriduzione**

Il tipo di emocomponente e le condizioni di conservazione influiscono sul sistema immune del ricevente attraverso i leucociti e i fattori solubili di origine leucocitaria, che agiscono come mediatori dell’immunosoppressione correlata alla trasfusione.

La tabella I sintetizza i lavori di numerosi ricercatori con modalità semi-quantitativa per facilitare l’analisi delle differenze che esistono fra emocomponenti, in base alle condizioni di conservazione, allo stato di leucodeplezione e al potenziale di immunosoppressione.

Questo potenziale è stato tratto dai dati *in vitro* che hanno provato l’inibizione della MLR, dei test di citotossicità e l’induzione di apoptosi. È evidente che vi sono notevoli lacune nelle nostre conoscenze circa il tasso di sostanze immunosoppressive presenti nei diversi emocomponenti, in funzione delle differenti condizioni di preparazione e di conservazione.

Come atteso, gli emocomponenti conservati e non leucodepleti tendono ad avere una maggior
**Transfusion-associated immunosuppression**

**Table I -** Immunosuppressive characteristics of component blood products used for transfusion. Abbreviations: BC = buffy coat; E = exponent (scientific notation representing 10 raised to the power of the number to the right); EC50 = effective concentration eliciting 50% of maximal immunosuppressive response; FFP = fresh frozen plasma; LR = leukoreduced; IC50 = concentration eliciting 50% inhibition of immune response; PC = platelet concentrate; pRBCs = packed red blood cells; RD = random donor; SD = single donor (apheresis); * = synthetic HLA peptide in MLR assay.

### Cellular constituents

<table>
<thead>
<tr>
<th>Blood products</th>
<th>WBC Content (cell/µL)</th>
<th>% Apoptotic Cell</th>
<th>% MLR (-IL-2)</th>
<th>% MLR (+IL-2)</th>
<th>% T-cell Prolif.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>References</strong></td>
<td>100,101,73,98,107</td>
<td>73</td>
<td>73</td>
<td>73</td>
<td>73</td>
</tr>
<tr>
<td>Whole blood</td>
<td>(1-5) E9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal serum</td>
<td>(0.5-3) E9</td>
<td>35%</td>
<td>40-70</td>
<td>50-90</td>
<td></td>
</tr>
<tr>
<td>pRBCs (&lt;2 hrs)</td>
<td>&lt;1 E9</td>
<td>50%</td>
<td>20-25</td>
<td>50-75</td>
<td>50-60</td>
</tr>
<tr>
<td>pRBCs (7-10 d)</td>
<td>&lt;1 E9</td>
<td>50%</td>
<td>0</td>
<td>50-60</td>
<td>5-10</td>
</tr>
<tr>
<td>pRBCs (14 d)</td>
<td>&lt;1 E9</td>
<td>60%</td>
<td>0</td>
<td>20-30</td>
<td>0</td>
</tr>
<tr>
<td>pRBCs (20-21 d)</td>
<td>&lt;1 E9</td>
<td>70%</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pRBCs (30 d)</td>
<td>&lt;1 E9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buffy Coat (BC)</td>
<td>1.2 E9</td>
<td>35%</td>
<td>40-70</td>
<td>50-90</td>
<td></td>
</tr>
<tr>
<td>pRBCs (washed)</td>
<td>(0.001-1) E8</td>
<td>25%</td>
<td>0</td>
<td>50-60</td>
<td>5-10</td>
</tr>
<tr>
<td>pRBCs (deglycerolized)</td>
<td>(0.05-1) E8</td>
<td>5%</td>
<td>20-30</td>
<td>50-75</td>
<td>50-60</td>
</tr>
<tr>
<td>LR-pRBCs (30 d)</td>
<td>&lt;5 E6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-pRBCs (35-42 d)</td>
<td>(0.05-1) E8</td>
<td>40%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RD-PC (4-5 d)</td>
<td>(0.05-1) E8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC-PC (24 hrs)</td>
<td>&lt;1 E9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC-PC (4-5 d)</td>
<td>&lt;1 E9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC-PC irradiated (4 d)</td>
<td>40%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-PC (4-5 d)</td>
<td>&lt;1 E9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-RD-PC (5 d)</td>
<td>(0.5-1) E9</td>
<td>50%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-SD-PC</td>
<td>&lt;1 E6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFP</td>
<td>&lt;1 E9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-FFP</td>
<td>&lt;1 E6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC50 or IC50</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Soluble constituents

<table>
<thead>
<tr>
<th>Blood products</th>
<th>sHLA-I (µg/mL)</th>
<th>sHLA-II (µg/mL)</th>
<th>C3a (µg/mL)</th>
<th>TNF-α (pg/mL)</th>
<th>sFasL (ng/mL)</th>
<th>% Apoptosis (CD8* cell)</th>
<th>% CTL Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>References</strong></td>
<td>74,77,78</td>
<td>77</td>
<td>64,122</td>
<td>119-121</td>
<td>77,78</td>
<td>78,94</td>
<td>74,78</td>
</tr>
<tr>
<td>Whole blood</td>
<td>1.7-2.7</td>
<td>0.15-0.5</td>
<td>200</td>
<td>0</td>
<td>&lt;0.2</td>
<td>2-50</td>
<td></td>
</tr>
<tr>
<td>Normal serum</td>
<td>1.06</td>
<td>2.5</td>
<td>468</td>
<td>11</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pRBCs (&lt;2 hrs)</td>
<td>1.2</td>
<td>2.4</td>
<td>533</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pRBCs (7-10 d)</td>
<td>2.6</td>
<td>2.55</td>
<td>1.455</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pRBCs (14 d)</td>
<td>3.16-5</td>
<td>2.36-3.66</td>
<td>1.235-2.359</td>
<td>75-90</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buffy Coat (BC)</td>
<td>&lt;1 E9</td>
<td>&lt;1</td>
<td>&lt;1</td>
<td>12</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pRBCs (washed)</td>
<td>&lt;1 E9</td>
<td>&lt;1</td>
<td>&lt;1</td>
<td>12</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pRBCs (deglycerolized)</td>
<td>&lt;1</td>
<td>&lt;1</td>
<td>&lt;1</td>
<td>12</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-pRBCs (30 d)</td>
<td>0.78-1.35</td>
<td>0.11-1.1</td>
<td>0.28-0.999</td>
<td>2</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-pRBCs (35-42 d)</td>
<td>4-7</td>
<td>1-1.5</td>
<td>2.000</td>
<td>75-1.890</td>
<td>18-28</td>
<td>31</td>
<td>15</td>
</tr>
<tr>
<td>RD-PC (4-5 d)</td>
<td>14-125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC-PC (24 hrs)</td>
<td>14-125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC-PC (4-5 d)</td>
<td>500-16,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-PC (4-5 d)</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-RD-PC (5 d)</td>
<td>500-16,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-SD-PC</td>
<td>10 (124)</td>
<td>1.000 (48,53)</td>
<td>3.000 (123)</td>
<td>50 (77)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFP</td>
<td>0.58-2.77</td>
<td>0.06-0.3</td>
<td>&lt;0.87</td>
<td>10</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-FFP</td>
<td>2.5 (177)</td>
<td>1.000 (48,53)</td>
<td>3.000 (123)</td>
<td>50 (77)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Blood Transf 2003; 1: 47-64
from leukocytes and complement activation fragments, steadily increase as a function of storage time and leukocyte degradation within blood products\textsuperscript{77}. In the instances where in vitro assays were performed to predict the immune suppressive effect of these soluble constituents, a correlation was seen as shown in Table I.

Nonleukocyte reduced older blood products have more soluble constituents and immunosuppressive potential than their leukocyte reduced counterparts. How well the in vitro immune suppressive potential translates to clinical outcome is largely speculative at this juncture.

The differences in data for the same blood products that have been stored for 5 days versus 30 days could introduce considerable variability between patients if the immunosuppressive potential did translate to clinical sequelae.

From Table I it is clear that a fresh pRBCs which contains less than 15\% apoptotic cells would not be equivalent to a 30-day old pRBC unit if infusion of apoptotic cells correlates with immunosuppression. Similarly, a fresh platelet product that may contain 10-15\% apoptotic cells\textsuperscript{107} and a 5-day old platelet product would not present equivalent exposure to apoptotic cells or soluble constituents such as cytokines.

Support for the view that aged blood products put patients at risk for postoperative infections has recently been acquired in a clinical study examining this question directly\textsuperscript{118}.

Conclusions

The conflicting clinical data regarding the benefit of leukocyte reduction in attenuating post-operative infectious complications and cancer recurrence could be explained in part by the variability of the transfusion products.

This review summarizes the soluble and cellular constituents in blood products that could contribute to the “transfusion effect”.

Prospective studies of the immunosuppressive effects of transfusion should consider the influence of the blood products transfused as they relate to the levels of apoptotic cells, C3a, and its nonanaphylatoxic but immunosuppressive metabolite, C3a\textsubscript{des\textsuperscript{Arg\textsuperscript{77}}} as well as sHLA-I, sHLA-II and sFasL.

concentrazione di cellule apoptotiche, così come di FasL, di sHLA-I e di sHLA-II, che da esse derivano. Ciò si traduce in un aumentata potenzialità di immunosoppressione in vitro, come dimostrato dalla ridotta risposta in coltura linfocitaria mista\textsuperscript{76}. Vi è un continuo aumento di cellule apoptotiche in rapporto alla conservazione e, dopo 30 giorni, più del 70\% di cellule sono divenute apoptotiche e non reattive in MLR\textsuperscript{76}. Risultati simili si dimostrano anche per i CP con il 40-50\% di cellule divenute apoptotiche dopo 5 giorni di conservazione\textsuperscript{107}. Anche se test di immunosoppressione in vitro non accompagnano questi studi, i risultati potrebbero essere simili a quelli osservati con i CE. La presenza di un alto tasso di cellule apoptotiche può essere predittivo del grado di immunosoppressione.

Gli emocomponenti più vecchi e non leucoridotti hanno più sostanze solubili e un maggior potenziale immunosoppressivo, rispetto ai prodotti analoghi ma leucodepleti.

Al momento, trasferire il potenziale immunosoppressivo dimostrato in vitro a risultati clinici (in vivo) è altamente speculativo. Le differenze fra i dati riscontrati sugli stessi emocomponenti conservati per 5 o per 30 giorni potrebbe introdurre considerevoli variabilità fra i pazienti se il potenziale immunosoppressivo fosse trasferito a sequelé cliniche. Dalla tabella I risulta evidente che un CE fresco contenente circa un 15\% di cellule apoptotiche non può essere equivalente a un CE vecchio di 30 giorni, semplicemente l’infusione di cellule apoptotiche corri (realmente) con l’immunosoppressione. Eualmente, un CP fresco che contenga un 10-15\% di cellule apoptotiche e un CP di 5 giorni non determineranno una equivalente esposizione a cellule apoptotiche o a costituenti solubili come le citochine.

Una prova che gli emocomponenti più vecchi pongono i pazienti a un maggior rischio di infezioni postoperatorie è stato recentemente acquisita da uno studio clinico che ha preso in considerazione direttamente questo problema\textsuperscript{118}.

Support for the view that aged blood products put patients at risk for postoperative infections has recently been acquired in a clinical study examining this question directly\textsuperscript{118}.

Conclusions

The conflicting clinical data regarding the benefit of leukocyte reduction in attenuating post-operative infectious complications and cancer recurrence could be explained in part by the variability of the transfusion products.

This review summarizes the soluble and cellular constituents in blood products that could contribute to the “transfusion effect”.

Prospective studies of the immunosuppressive effects of transfusion should consider the influence of the blood products transfused as they relate to the levels of apoptotic cells, C3a, and its nonanaphylatoxic but immunosuppressive metabolite, C3a\textsubscript{des\textsuperscript{Arg\textsuperscript{77}}} as well as sHLA-I, sHLA-II and sFasL.
Doing so may uncover the clinical relevance of the transfusion effect in surgical patients.

This review also supports the potential of leukocyte reduction to abrogate the transfusion effect.

Prestorage reduction of neutrophils by filtration would reduce the pool of donor cells that contributes to the sFasL-mediated apoptosis of recipient T-cells.

Prestorage leukocyte reduction alone may not mitigate all immunosuppressive characteristics in a blood product because complement levels in plasma rich component blood products may be elevated at the time of transfusion.

Although some filters reduce C3a and its immunosuppressive metabolite, and could possibly influence the immunosuppressive effect by use at the bedside at the time of transfusion, others increase them.

Moreover, some methods of preparation of platelets, notably apheresis machines, may dramatically increase C3a as well.

One implication of the studies reviewed here relate to the notion that WBC inactivation (as may occur with gamma-irradiation, and certain methods of pathogen inactivation or reduction) may obviate the need for leukocyte reduction.

An increased concentration of apoptotic cells was shown in single donor platelet products that were irradiated\(^7\).

If immunosuppression is mediated in part by apoptotic cells or soluble constituents derived from the degradation of apoptotic leukocytes, then WBC inactivation methods may not mitigate the transfusion effect, since apoptotic leukocytes bearing FasL and degradation products including soluble forms of FasL, sHLA-I and sHLA-II will likely remain in the transfused product.

Even if the blood product is washed, washing alone does not substantially remove or reduce cells.

Refinement of the clinical studies may show that the frequency of the "transfusion effect" may be actually much greater than is reported.

This proposed under-reporting of the transfusion effect may be due to the lack of consideration of the type of blood products transfused, the manner of preparation, and the storage conditions.

It is suggested that if greater attention is afforded the qualitative differences in the blood products used and these variables are controlled for either

**Conclusions**

I discordanti dati clinici relativi ai benefici effetti della leucodeplezione nel ridurre le complicazioni infettive e le ricadute neoplastiche nel periodo postoperatorio potrebbero essere spiegati, almeno in parte, dalla variabilità degli emocomponenti. Questa Rassegna prende in esame, sinteticamente, le sostanze solubili e cellulari che possono contribuire all'effetto trasfusione. Studi prospettici sugli effetti immunosoppressivi della trasfusione dovrebbero considerare l'influenza degli emocomponenti trasfusi in rapporto al loro contenuto in cellule apoptotiche, in C3a\(^{desArg^7}\), in sHLA-I, in sHLA-II e in sFasL. Ciò facendo, si può scoprire l'importanza clinica dell'effetto trasfusione sui pazienti chirurgici. La rassegna avalla anche la potenzialità della leucodeplezione nell'abrogare l'effetto trasfusione. La riduzione *prestorage* dei neutrofili, mediante filtrazione, dovrebbe ridurre il pool delle cellule del donatore che contribuiscono all'apoptosi delle cellule T del ricevente mediata da sFasL. La leucoriduzione *prestorage* da sola non può ridurre totalmente tutta l'attività immunosoppressiva di un prodotto trasfusionale, dato che il tasso di componenti complementari in emocomponenti ricchi di plasma può essere elevato al momento della trasfusione. Nonostante che alcuni filtri siano in grado di ridurre il C3a e i suoi metaboliti ad azione immunosoppressiva, e di influire, quindi, su tale azione con il loro uso al momento della trasfusione (filtrazione *bedside*), altri la aumentano. Inoltre, alcune metodiche di preparazione di CP, in particolare quelle da aferesi, possono aumentare consistentemente la presenza di C3a. Un'implicazione degli studi analizzati in questa rassegna riguarda la nozione che l'inattivazione dei globuli bianchi (che si può ottenere con raggi gamma o con certi metodi di inattivazione o riduzione dei patogeni) può rendere superflua la leucodeplezione. Un'aumentata concentrazione di cellule apoptotiche è stata dimostrata in CP da singolo donatore sottoposti a irradiazione\(^8\). Se l'immunosoppressione è mediata, almeno in parte, da cellule apoptotiche o dai prodotti solubili che da esse derivano, allora l'inattivazione dei globuli bianchi non è in grado di ridurre l'effetto trasfusione, dato che i leucociti apoptotici portano FasL e che i prodotti della loro disgregazione, compresi gli sFasL, di sHLA-I e di sHLA-II, rimarrebbero, con ogni probabilità
statistically or physically, there may be a more dramatic "transfusion effect" to be uncovered in clinical trials.

Acknowledgments

This review has been reproduced, with the permission of the Authors and of the Journal from Modern Aspects of Immunobiology 2002; 2: 159-63.

The collaboration of the firm Pall Italia is gratefully acknowledged.

References

Transfusion-associated immunosuppression


120) Muylle L, Joos M, Wouters E, et al. Increased tumour necrosis factor alpha (TNF alpha), interleukin 1, and interleukin 6 (IL-6) levels in the plasma of stored platelet concentrates: relationship between TNF alpha and IL-6 levels and febrile transfusion reactions. Transfusion 1993; 33: 195-9.