NAT screening for Parvovirus B19: a feasibility study

Gianluca Gessoni, Paolo Barin, Carmela Di Natale, Giorgio Marchiori

Dipartimento Inter-Aziendale di Medicina Trasfusionale della provincia di Venezia, Italia

Background. Human Parvovirus B19 is a frequent contaminant of blood- and plasma-derived products and transmission of the B19 has been shown to occur through the administration of contaminated products. Inactivation of the virus has proven to be difficult and, as a consequence, manufacturers of plasma-derivate medicinal products have implemented screening measures to reduce the viral load of B19 in plasma pools, using nucleic acid amplification techniques (NAT). The objectives of this study were to estimate the feasibility of routine NAT screening for B19-DNA in a medium size Transfusional Service and to estimate the prevalence of B19-positive donations in our blood donor population.

Materials and methods. For quantitative detection of human Parvovirus B19-DNA we used a fully automated analyser for real-time PCR and a commercial method: Light Cycler Parvovirus B19 quantification kit (Roche Diagnostics). Nucleic acids were extracted using the Multiprep Specimen Processing procedure for preparation of mini-pools specimens. After validation of the methods, from May 2005, we improved our NAT testing routine with the introduction of NAT testing for B19-DNA performed before the shipping of plasma to industry.

Results. Modification of the method provided a satisfactory sensitivity (detection limit 60UI/mL) in mini-pools constituted by 24 samples. We tested 15,096 blood donations in 629 mini pools. The overall prevalence of invalid mini-pools was 4.9%. Nine mini-pools were initially reactive and five were confirmed as reactive, none

Introduzione

Il Parvovirus B19 fu scoperto nel 1975 da Cossart e colleghi che, inaspettatamente, trovarono delle particelle virali nel siero di pazienti asintomatici sottoposti a screening per l'epatite B. Le caratteristiche biochimiche e molecolari dimostrarono che si trattava di un parvovirus e, siccome erano state osservate nel campione numero 19 del pannello B, il virus fu denominato Parvovirus B191.

Il B19 è un piccolo virus privo di pericapside, il genoma è costituito da ssDNA, di 5,6 Kb, il capside ha simmetria cubica ed un diametro di 20-25nm. Il capside del B19 è costituito da due proteine: la proteina capsidica minore (VP1) di 83kDa e la proteina capsidica maggiore (VP2) di 5kDa, che costituisce il 95% del capsid. Le sequenze aminoacidiche delle due proteine sono collineari con identico carbossi terminale, ma la proteina VP1 presenta una aggiunta di 227 aminoacidi all'estremo amino terminale. Vi è una ORF per una proteina non strutturale (NS1) che codifica per un trascritto di 77kDa. NS1 è una proteina fosforilata che svolge funzioni di controllo sulla trascrizione delle proteine virali e sulla replicazione virale 2.

Sono stati recentemente identificati alcuni nuovi genotipi di B19; il ceppo originale viene classificato come genotipo 1 od eritrovirus, i ceppi A6 e K71 sono classificati come genotipo 2, il ceppo V9 costituisce il prototipo del genotipo 3. L’unico ospite in natura del B19 è l’uomo. Il virus si replica nei progenitori eritroidi, inibendo l’eritropoiesi. Il tropismo cellulare del B19 sembra dovuto alla distribuzione del globoside Gb4, che costituisce l’antigene gruppo ematico eritrocitario P.

L’antigene P è presente nelle cellule della linea eritroide ma anche nelle piastrine, nel tessuto cardiaco, epatico, renale, nell’endotelio e nella sinovia. L’antigene P, che funge da recettore per il B19, è stato evidenziato sulle cellule
with a viral load higher than 10^4 UI/mL. The overall prevalence of B19-DNA-positive mini-pools was 0.79%.

Conclusions. Testing all donations as mini-pools of 24 samples to identify mini-pools with high viral load is possible to ensure that the viral load in fractionation pools remains within the limits required by the FDA and European Pharmacopoeia. In the Authors' opinion, using the extraction procedure and the analytical method presented in this study, the introduction of NAT testing for B19-DNA, before sending the plasma to industrial fractionation processes, is feasible. The time required is about 90 minutes each analytical session for 3-4 analytical sessions/month. The financial cost is about 1 Euro each blood unit.

Key words: Parvovirus, B19-DNA, NAT screening, real-time PCR, blood units

Introduction

Parvovirus B19 was discovered in 1975 by Cossart and colleagues, who unexpectedly found viral particles in the sera of asymptomatic patients being screened for hepatitis B infection. Biochemical and molecular characteristics subsequently demonstrated that these particles were parvoviruses and, because specimen 19 of panel B contained the unexpected virus, the virus was given the name Parvovirus B19.

B19 is a small, non-enveloped, single-stranded DNA virus with icosahedral symmetry (20-25nm in diameter) and has a genome of 5.6kb. The B19 capsid consists of a 83kDa minor structural protein (VP1), and a 5kDa major structural protein (VP2 - 95% of the total capsid). The sequences of the two proteins are collinear, with VP2 being identical to the carboxyl-terminus of VP1; however, VP1 comprises an additional 227 amino acid domain that is unique to the amino-terminal. There is an open reading frame for a non-structural protein, NS1, which encodes a protein product of 77kDa. NS1 is a phosphoprotein with important regulatory functions, including control of transcription and viral replication.

A number of novel genotypes have been identified: the original strain, B19, is classified as genotype 1 erythrovirus, the newly identified strains A6 and K71 are classified as genotype 2 and erythrovirus V9 is the prototype of genotype 3.

The only known host for B19 is human. The virus replicates in human erythroid progenitor cells inhibiting erythropoiesis. The cell tropism of productive B19 infection is mainly due to the restrictive cellular distribution of the P trophoblastic of the placenta. Recent studies suggest that the presence of the solo antigene P non sia sufficiente a permettere l’ingresso del B19 nelle cellule ed è stato suggerito che diverse β-integrine fungano da recettori.

La trasmissione del B19 avviene solitamente per contatto interpersonale, per mezzo di aerosol o secrezioni respiratorie; emoderivati contaminati, come concentrati di fatti della coagulazione, possono essere fonte di trasmissione iatrogenica. Il B19 può essere trasmesso per via transplacentare da una madre infetta al feto.

Le infezioni da B19 sono assai comuni e sono state descritte in tutto il mondo ed in tutte le stagioni. La sieroprevalenza aumenta con l'età ed oltre il 70% degli adulti presenta anticorpi. La infezione da Parvovirus umano B19 può risultare in un ampio spettro di manifestazioni cliniche che sono influenzate in via primaria dallo stato immunologico del paziente. Nell'ospite normale, le infezioni da parvovirus possono essere asintomatiche o possono esitare nell'ente infettivo (V malattia) o in una artropatia. Pazienti con patologia ematologica o immunocompromessi con infezione da B19 possono sviluppare una anemia aplastica. L'idrope fetale e l'aborto sono complicazioni delle infezioni intrauterine da Parvovirus B19.

Dopo infezione da B19, la viremia inizia una settimana dopo l'esposizione ed abitualmente dura circa 5 giorni, con il picco dopo due giorni. Le IgM specifiche sono dimostrabili nell'ultimo periodo della viremia (10-12 giorni dopo l'infezione) ed abitualmente persistono sino a 5 mesi. Le IgG diventano evidenziabili circa 15 giorni dopo l'infezione, persistono ad alto titolo per alcuni mesi, sono dimostrabili per tutta la vita.

La comparsa degli anticorpi si accompagna alla clearance virale. Durante l'infezione acuta la viremia può raggiungere 10^{12} genomi equivalenti/mL; nell'ospite immunocompetente il B19-DNA è rilevabile per almeno un mese dopo l'infezione. Nelle infezioni croniche da B19 il DNA virale può persistere nell'individuo asintomatico immunocompetente senza la presenza delle IgG o/delle IgM specifiche. Inoltre è stato visto che il B19-DNA può persistere in individui asintomatici ed immunocompetenti per lunghi periodi di infezione. Recent studies suggest that the presence of the solo antigene P non sia sufficiente a permettere l’ingresso del B19 nelle cellule ed è stato suggerito che diverse β-integrine fungano da recettori.
blood group antigen globoside (Gb4), which is found most commonly on cells of the erythroid lineage, but also on platelets, tissues from the heart, liver, lung, kidney, endothelium and on synovium. The P blood group antigen, which acts as a receptor for B19, has been detected on cells of the villous trophoblast of placental tissues, in varying amounts, during the course of pregnancy. Moreover, recent evidence suggests that the presence of the P antigen alone is not sufficient to gain entry into cells and it has been suggested that multiple β-integrins may function as co-receptors for B19 cellular assimilation. B19 transmission occurs most commonly by personal contact via aerosol or respiratory secretions; however, contaminated blood products, such as clotting factor concentrates, are a source of iatrogenic transmission. B19 can be transmitted transplacentally from an infected mother to her foetus. Infection with B19 is very common and cases can be transmitted transplacentally from an infected mother to her foetus. Infection with B19 is very common and cases can be transmitted transplacentally from an infected mother to her foetus.

In plasma-pool ed emocomponenti livelli di B19-DNA inferiori di 10^4 non sembrano essere infettanti, mentre livelli superiori a 10^7 sembrano essere sempre in grado di trasmettere l’infezione. In questo campo la farmacopea Europea richiede, dal 2004, che i plasma-pool per la produzione di immunoglobuline anti-D non devono contenere più di 10^6 UI/mL di B19-DNA. Pertanto donazioni altamente viremiche devono essere identificate (ed eliminate) prima dell'allestimento dei plasma-pool, e dopo il processo di pooling deve essere determinato il livello di B19-DNA. Inoltre, le indicazioni europee (EMEA/CMPC/BWP/5180/03 del 21.10.04) prescrivono per gli emoderivati di tener conto dell'infettività del plasma destinato al frazionamento.

Nel nostro Servizio Trasfusionale utilizziamo, nella qualificazione biologica delle unità ematiche, una tri-NAT eseguita su mini-pool (MP), adottando il kit Ampliscreen (Roche Molecular System, Branchburg, NJ, USA). Questi test vengono effettuati in MP formati da 24 campioni. L'obiettivo del presente lavoro è quello di riportare i risultati di uno studio di fattibilità concernente l'introduzione del test NAT per B19-DNA a fianco delle procedure di tri-NAT screening (HBV-DNA, HCV-RNA e HIV-RNA), eseguiti nello studio della qualificazione delle unità ematiche prima dell'invio del plasma all'industria di frazionamento.

Materiali e metodi

Metodi analitici

In una prima fase, per l'estrazione del B19-DNA dal plasma, abbiamo adottato, come consigliato dal produttore, il metodo high pure viral nucleic acid kit, fornito dalla ditta Roche. In questo metodo, la liberazione degli acidi nucleici avviene per azione di una soluzione tamponata ad

NAT screening for Parvovirus B19

Blood Transfus 2006; 4: 67-80
standardisation has become possible. Müller et al. and Thomas et al. have also described standardised B19 PCR assay systems. These standardised methods can be used not only in a diagnostic setting, but also for rapid screening of plasma mini-pools (MP) and blood products. B19 can be transmitted through blood transfusions and plasma-derived products, but screening of blood donations for the presence of B19-DNA is not routine, despite the fact that this virus is highly resistant. In fact, B19 can withstand processes that involve solvent/detergent treatment, lyophilization and temperatures of 100 °C for 30 minutes and, despite these harsh virucidal processes, still have the capacity to contaminate factor VIII and factor IX concentrates. The infectious level of B19 in blood products has yet to be established with certainty, and is likely to depend on the level of B19 IgG that is co-present in the product, in addition to the recipient's immune status. Pooled plasma and blood products with B19-DNA levels lower than 10^4 UI/mL may not be infectious, while those with a viral load greater than 10^7 UI/mL are capable of transmitting infection. Indeed, from 2004, the European Pharmacopoeia states that plasma pools for the production of anti-D immunoglobulin should not contain more than 10^4 UI/mL of B19-DNA. Hence, highly viraemic blood donations must be identified (and discarded) before the pooling process and, after the pooling process, the level of B19-DNA must be determined. Moreover, European regulations require a risk assessment for B19 in blood components. This risk assessment involves an evaluation of potential infectivity of the plasma source.

In our Transfusional Service the strategy for biological qualification of blood units is based on tri-NAT screening of mini-pools (MP) using Ampliscreen methods, supplied by Roche Molecular System (Branchburg, NJ, USA). These tests are performed in MP, constituted from 24 blood units. The aim of this article is to report the results of a feasibility study concerning the implementation of NAT screening for B19-DNA alongside the tri-NAT screening (HBV-DNA, HCV-RNA and HIV-RNA), performed for biological qualification of blood units, before the plasma is sent for industrial processing.

Materials and methods

Analytical methods

For the extraction of B19-DNA from plasma samples, at first, we adopted, as recommended by the manufacturer, a
commercial high pure viral nucleic acid kit, supplied by Roche Diagnostics GmbH (Penzberg, Germany). In this method, viral nucleic acid is released by incubating the sample in a special lysis/binding buffer.

After applying the lysis mixture to a High Pure Filter Tube, nucleic acid binds to the surface of glass fibres in the presence of chaotropic salts. The nucleic acid remains bound, while a series of rapid wash-and-spin steps removes salts, proteins, and other impurities. Finally, low salt elution releases the nucleic acid from the glass fibre fleece for direct use in downstream applications.

In a second phase, we evaluated the Multiprep Specimen Processing (Roche) procedure for preparation of MP specimens. In this procedure, viral particles are first pelleted from the pooled plasma sample (1mL) by high speed centrifugation, and then the pellet (100µL) is treated with a chaotropic agent and the nucleic acids precipitated with alcohol.

The Multiprep Internal Control (IC), containing the HBV, HCV and HIV IC, is introduced into each sample and serves as an extraction and amplification control for each processed specimen and control. In this phase we added 2.8µL of IC provided with the Light Cycler Parvovirus B19 quantification kit.

For the quantitative detection of human Parvovirus B19-DNA, we used a fully automated analyser for real-time PCR (Light Cycler) and a commercial method: Light Cycler Parvovirus B19 quantification kit; both the analyser and the kits were supplied by Roche. This method provides B19-specific primers and two hybridisation probes, labelled with fluorescent molecules. Hybridisation leads to fluorescence resonance energy transfer between the two fluorophores, and the emitted light is measured by a LightCycler instrument. Real-time monitoring of fluorescence intensities, relative to external standards of known target concentrations, allows quantification of the accumulating product.

To monitor the efficiencies of the nucleic acid extraction and the PCR process, IC are amplified with the same primers as the target but hybridised with probes carrying different fluorophores. The fluorescence emitted from the IC-specific probes is also measured. The raw data created by either quantitative PCR test were analyzed with Light Cycler Software version 3.5. Crossing points and calculated concentrations were obtained by the second derivative maximum method together with proportional baseline adjustment. This method calculates the fractional cycle number of the crossing-point value of each sample automatically and thus makes the method independent of

Preparazione di riferimento

Preparazione ad alta concentrazione (HCP): per la valutazione della resistenza alla cross contaminazione abbiamo utilizzato il siero commerciale: PelySpy B19-DNA, contenente circa 900 UI/mL, fornito dai laboratori CLB, Alkmaar, Olanda. Come campione negativo abbiamo utilizzato il plasma umano normale (NHP) fornito dalla Roche.

Validazione dei metodi e del laboratorio

La robustezza alla cross contaminazione è stata valutata utilizzando HCP e NHP. Dopo una fase di estrazione eseguita seguendo le istruzioni del produttore, HCP e NHP sono stati distribuiti seguendo un modello alternato, ciascuno in dodici capillari di vetro.

Disponevamo quindi di dodici campioni positivi ad alto titolo, alternati a dodici campioni negativi. Abbiamo eseguito una valutazione della sensibilità utilizzando due diversi metodi di estrazione: high pure viral nucleic acid kit e la procedura Multiprep Specimen Processing. Abbiamo valutato la preparazione LCP non diluita (900UI/mL), diluita 1:2 (450UI/mL), diluita 1:10 (90UI/mL), diluita 1:20 (45UI/mL) e diluita 1:100 (9UI/mL).

L’estrazione è stata eseguita utilizzando entrambi i metodi sopra descritti, ciascun campione è stato testato in triplicato in quattro diverse sedute analitiche; così, per ciascun punto di diluizione, disponevamo per l’elaborazione statistica di dodici risultati per ciascuna metodica.
Applicazioni di routine

Nel laboratorio degli Autori lo screening NAT per HBV, HCV e HIV viene eseguito utilizzando il metodo Ampliscreen Roche. Sono allestiti mini-pools di 24 donazioni utilizzando un pipettatore Tecan Genesis. Gli acidi nucleici sono isolati dal plasma con la procedura Multiprep Specimen Processing disegnata per la preparazione di campioni in mini-pool gli acidi nucleici sono amplificati e rilevati utilizzando il metodo COBAS Ampliscreen HBV, HCV e HIV, il metodo utilizza un controllo interno per monitorare la performance analitica in ciascun test così come un sistema enzimatico (uracil-DNA glicosilasi) per ridurre la potenziale contaminazione da ampliconi. L'analisi dei campioni, cioè la trascrizione inversa dell'RNA bersaglio per generare il DNA complementare (cDNA), l'amplificazione PCR del cDNA bersaglio utilizzando primers complementari virus specifici, l'ibridazione dei prodotti di amplificazione a probes oligonucleotidiche specifiche per il bersaglio, la rilevazione dei prodotti di amplificazione legati ai probes mediante una reazione colorimetrica sono state eseguite con la strumentazione automatica dedicata COBAS Amplicor. Nel nostro Servizio Trasfusionale, dal maggio al novembre 2005, abbiamo testato con il metodo Ampliscreen 15.096 donazioni (BD). Dopo il processo di estrazione, una aliquota dell'estratto è stata congelata a -80 °C e conservata fino a quando i test per B19-DNA sono stati eseguiti, prima dell'invio del plasma source al frazionamento industriale. Ovviamente, gli emocomponenti labili erano validati e trasfusi senza aspettare i risultati dello screening per B19-DNA.

Il protocollo seguito nel nostro Laboratorio per la gestione dei campioni è risportato nella figura 1. Abbiamo testato per B19-DNA 15.096 BU in 629 MP, ciascun MP era costituito da 24 BU. Questi MP sono stati testati in 26 sedute analitiche (AS). Ciascuna AS era costituita da un controllo positivo, un controllo negativo, un run control (RC) contenente 10UI/mL per HBV-DNA, 20UI/mL per HCV-RNA, 50UI/mL per HIV-RNA e 150UI/mL per B19-DNA.

Analisi statistica

Abbiamo considerato una AS invalida se uno dei controlli del kit o il run control venivano classificati in maniera incorretta ed abbiamo considerato un MP invalido se il controllo interno (IC) dava un risultato negativo. La valutazione del detection limit (95%) è stata eseguita utilizzando il metodo dei probit.
Nucleic acids were isolated from plasma samples with the Multiprep Specimen Processing procedure for preparation of MP specimens and amplified and detected with the COBAS AmpliScreen HBV, HCV and HIV assay. The Ampliscreen assay incorporates an IC for monitoring assay performance in each individual test as well as an enzymatic system (uracil-DNA glycosylase) to reduce potential contamination by previously amplified material.

Risultati

Validazione dei metodi e del laboratorio

Nella valutazione della resistenza alla cross contaminazione, 12 su 12 (100%) dei campioni positivi e 12 su 12 (100%) dei campioni negativi sono stati classificati correttamente. Nella valutazione della sensibilità,
Sample processing, reverse transcription of target RNA to generate complementary DNA (cDNA), PCR amplification of target cDNA using virus-specific complementary primers, hybridisation of the amplified products to oligonucleotide probes specific to the target(s), and detection of the probe-bound amplified products by colorimetric determination were performed with a dedicated automated analyser, COBAS Amplicor.

In our Transfusion Service, from May to November 2005, we tested 15,096 blood donations with the Ampliscreen method, after the extraction process an aliquot was frozen at –80 °C and stored until the test for B19-DNA were performed, before shipment of the plasma source to the industrial fractionation process.

Obviously, labile blood products were licensed and transfused without regard to the B19-DNA screening result. The processing protocol adopted in our Laboratory for samples is reported in figure 1. We tested 15,096 blood units in 629 MP for B19-DNA. Each MP was constituted from 24 blood units.

These MP were tested in 26 analytical sessions. Each analytical session was constituted by an average of 24.3 MP (from 20 to 29), a positive control, a negative control and a multiparametric run control containing 10U/mL for HBV-DNA, 20U/mL for HCV-RNA, 50U/mL for HIV-RNA and 150U/mL for B19-DNA.

Non abbiamo osservato nessuna AS invalida. Tra i 629MP 31 (4,9%) hanno dato un risultato invalido per negatività dello IC, la prevalenza di MP invalidi è scesa dallo 8,2%, osservato nel maggio 2005, al 3,0% rilevato nel novembre 2005. Questi dati sono illustrati nella figura 2.

Abbiamo osservato nove MP inizialmente reattivi; di questi, cinque erano ripetibilmente reattivi. Tutti questi MP mostravano un basso viral load (1,2 10³ UI/mL, 1,6 10³ UI/mL, 2,8 10³ UI/mL, 3,4 10³ UI/mL and 6,8 10³ UI/mL, rispettivamente). La prevalenza globale di mini-pool positivi per B19-DNA era 0,79%.

Discussione

Visto che il B19 è principalmente trasmesso per via respiratoria, il virus è piuttosto resistente alle condizioni ambientali. Il virione icosaedrico e privo di envelope è resistente a numerosi trattamenti chimico-fisici, così come il trattamento con solvente detergente e la fotoinattivazione utilizzando il metodo di estrazione high pure, il detection limit al 95% era 320UI/mL, mentre utilizzando il metodo di estrazione multiprep, il detection limit 95% era 60UI/mL.

Applicazioni di Routine
Statistical analysis

We considered an analytical session invalid if one of the kit's control or run-control was incorrectly classified, and we considered a MP invalid, if the IC gave a negative result. The 95% detection limit was assessed using the probit's method.

Results

Method and laboratory validation

In the evaluation of robustness to cross contamination, 12/12 (100%) of the positive samples and 12/12 (100%) of the negative were correctly classified.

Using the high pure extraction method, the detection limit (95%) was 320UI/mL. Using the multiprep method, the detection limit (95%) was 60UI/mL.

Routine application

We did not observe any invalid analytical session. Among 629 MP, 31 (4.9%) gave an invalid result, due to negativity of the IC. The prevalence of invalid MP fell from 8.2% in May 2005 to 3.0% in November 2005. These results are reported in figure 2. We observed nine initially reactive MP, of which five were repeatedly reactive. These mini-pools showed a low viral-load (1.2x10^3UI/mL, 1.6x10^3UI/mL, 2.8x10^3UI/mL, 3.4x10^3UI/mL and 6.8x10^3UI/mL, respectively). The overall prevalence of positive mini-pools was 0.79%.

Discussion

Due to the fact that B19 is primarily spread via the respiratory route, the virus is quite resistant to environmental conditions. The icosahedral non-enveloped virion is resistant to ordinary physicochemical factors, including solvent-detergent treatment, and methylene blue photo-inactivation; moreover, because of its minute size, the pathogen is also relatively resistant to filtration. With regard to heat resistance, human parvoviruses are stable after treatment at 56 °C for 1 hour and it has been shown that albumin preparations may be contaminated with B19-DNA and, although the presence of B19 DNA does not necessarily indicate infectious virus, these preparations are pasteurised at 60 °C for 10 hours. Various strain of con blu di metilene; inoltre, per le sue piccole dimensioni il patogeno è anche piuttosto resistente alla filtrazione. Riguardo alla resistenza termica, il Parvovirus umano è stabile dopo trattamento a 56 °C per 1 ora. Inoltre è stato dimostrato la presenza di B19-DNA nelle preparazioni a base di albumina e, sebbene la presenza di B19-DNA non implichi necessariamente infettività, questi preparati sono pastorizzati per 10 ore a 60 °C. Vari ceppi di parvovirus sono stati sottoposti per 60 minuti a temperature comprese tra 75 e 90 °C, ed è stato dimostrato come la resistenza del virus sia largamente dipendente dal medium usato per la sospensione (acqua, soluzioni saline, siero) con il siero che permette la migliore sopravvivenza. Il calore secco appare poco efficace nell'inattivare il B19, che può essere evidenziato dopo 1 ora a 100 °C14,15,19. Sulla base di queste considerazioni abbiamo ritenuito di non procedere alla valutazione della stabilità dello B19-DNA a +4 °C e dopo congelamento-scongelamento.

Ulteriori studi hanno dimostrato che, per la quantificazione del B19-DNA, il miglior campione disponibile è il plasma ottenuto da sangue intero anticoagulato con EDTA; anche il plasma citratato od il siero sono utilizzabili20. Solitamente nel nostro Dipartimento Trasfusionale i campioni per il test NAT sono raccolti in tubi EDTA standard che sono conservati integri a +4 °C per non oltre 48 ore. Nel caso di sedi di raccolta decentrate (Chioggia), poiché è possibile sia necessario conservare i campioni per oltre 48 ore (campioni raccolti venerdì e processati lunedì), utilizziamo i tubi PPT (Terumo Europe, Lovano, Belgio).

La figura 1 riassume i flussi analitici all'interno del nostro Laboratorio per la qualificazione biologica delle unità ematiche. Brevemente, durante l'allestimento dei mini-pool, utilizzando il pipettatore Tecan, vengono allestite le piastre di back-up, che vengono immediatamente congelate a -80 °C. I tubi originali vengono conservati a +4 °C sino alla conclusione del processo di qualificazione biologica. Dopo l'allestimento dei mini-pool e l'ultracentrifugazione, si procedeva alla aggiunta dello IC del kit (per HBV, HCV e HIV) e del IB del B19 a 100μL del pellet, la procedura di estrazione utilizzata era la multiprep extraction procedure. Il produttore consiglia di aggiungere 5μL di IC a 200μL di campione (singolo) utilizzando la procedura di estrazione high pure. In una prima fase, avevamo deciso di mantenere invariati i rapporti aggiungendo a mezzo volume di campione mezzo volume di IC (100μL e 5μL rispettivamente); tuttavia in questo modo, ottenevamo una percentuale assai alta (10-15%) di campioni invalidi per negatività dello IC. La decisione di utilizzare un maggior volume di IC (2,8μL) ci ha permesso di risolvere il problema.

Statistical analysis

We considered an analytical session invalid if one of the kit's control or run-control was incorrectly classified, and we considered a MP invalid, if the IC gave a negative result. The 95% detection limit was assessed using the probit's method.

Results

Method and laboratory validation

In the evaluation of robustness to cross contamination, 12/12 (100%) of the positive samples and 12/12 (100%) of the negative were correctly classified.

Using the high pure extraction method, the detection limit (95%) was 320UI/mL. Using the multiprep method, the detection limit (95%) was 60UI/mL.

Routine application

We did not observe any invalid analytical session. Among 629 MP, 31 (4.9%) gave an invalid result, due to negativity of the IC. The prevalence of invalid MP fell from 8.2% in May 2005 to 3.0% in November 2005. These results are reported in figure 2. We observed nine initially reactive MP, of which five were repeatedly reactive. These mini-pools showed a low viral-load (1.2x10^3UI/mL, 1.6x10^3UI/mL, 2.8x10^3UI/mL, 3.4x10^3UI/mL and 6.8x10^3UI/mL, respectively). The overall prevalence of positive mini-pools was 0.79%.

Discussion

Due to the fact that B19 is primarily spread via the respiratory route, the virus is quite resistant to environmental conditions. The icosahedral non-enveloped virion is resistant to ordinary physicochemical factors, including solvent-detergent treatment, and methylene blue photo-inactivation; moreover, because of its minute size, the pathogen is also relatively resistant to filtration. With regard to heat resistance, human parvoviruses are stable after treatment at 56 °C for 1 hour and it has been shown that albumin preparations may be contaminated with B19-DNA and, although the presence of B19 DNA does not necessarily indicate infectious virus, these preparations are pasteurised at 60 °C for 10 hours. Various strain of con blu di metilene; inoltre, per le sue piccole dimensioni il patogeno è anche piuttosto resistente alla filtrazione. Riguardo alla resistenza termica, il Parvovirus umano è stabile dopo trattamento a 56 °C per 1 ora. Inoltre è stato dimostrato la presenza di B19-DNA nelle preparazioni a base di albumina e, sebbene la presenza di B19-DNA non implichi necessariamente infettività, questi preparati sono pastorizzati per 10 ore a 60 °C. Vari ceppi di parvovirus sono stati sottoposti per 60 minuti a temperature comprese tra 75 e 90 °C, ed è stato dimostrato come la resistenza del virus sia largamente dipendente dal medium usato per la sospensione (acqua, soluzioni saline, siero) con il siero che permette la migliore sopravvivenza. Il calore secco appare poco efficace nell'inattivare il B19, che può essere evidenziato dopo 1 ora a 100 °C14,15,19. Sulla base di queste considerazioni abbiamo ritenuito di non procedere alla valutazione della stabilità dello B19-DNA a +4 °C e dopo congelamento-scongelamento.

Ulteriori studi hanno dimostrato che, per la quantificazione del B19-DNA, il miglior campione disponibile è il plasma ottenuto da sangue intero anticoagulato con EDTA; anche il plasma citratato od il siero sono utilizzabili20. Solitamente nel nostro Dipartimento Trasfusionale i campioni per il test NAT sono raccolti in tubi EDTA standard che sono conservati integri a +4 °C per non oltre 48 ore. Nel caso di sedi di raccolta decentrate (Chioggia), poiché è possibile sia necessario conservare i campioni per oltre 48 ore (campioni raccolti venerdì e processati lunedì), utilizziamo i tubi PPT (Terumo Europe, Lovano, Belgio).

La figura 1 riassume i flussi analitici all'interno del nostro Laboratorio per la qualificazione biologica delle unità ematiche. Brevemente, durante l'allestimento dei mini-pool, utilizzando il pipettatore Tecan, vengono allestite le piastre di back-up, che vengono immediatamente congelate a -80 °C. I tubi originali vengono conservati a +4 °C sino alla conclusione del processo di qualificazione biologica. Dopo l'allestimento dei mini-pool e l'ultracentrifugazione, si procedeva alla aggiunta dello IC del kit (per HBV, HCV e HIV) e del IB del B19 a 100μL del pellet, la procedura di estrazione utilizzata era la multiprep extraction procedure. Il produttore consiglia di aggiungere 5μL di IC a 200μL di campione (singolo) utilizzando la procedura di estrazione high pure. In una prima fase, avevamo deciso di mantenere invariati i rapporti aggiungendo a mezzo volume di campione mezzo volume di IC (100μL e 2,5μL rispettivamente); tuttavia in questo modo, ottenevamo una percentuale assai alta (10-15%) di campioni invalidi per negatività dello IC. La decisione di utilizzare un maggior volume di IC (2,8μL) ci ha permesso di risolvere il problema.
parvovirus were treated for 60 minutes in the temperature range 75 to 90 °C: it was found that the resistance depended largely on the medium (distilled water, saline solutions, plasma) in which the viruses were suspended, during heating. The resistance was highest in plasma. Dry heat appears to be poorly effective for inactivating B19, which was still demonstrated after 1 hour at 100 °C14,15,19. On the basis of these data from literature, we decided that an evaluation of the stability of B19-DNA at +4 °C and after freezing/thawing were unnecessary.

Further studies demonstrated that plasma obtained from EDTA-anticoagulated whole blood is a better sample for quantification of B19-DNA with PCR methods than either serum or citrated plasma20. Usually, in our Transfusion Service, samples for NAT testing are collected in standard EDTA tubes that are stored at +4 °C for no more than 48 h. For samples from a peripheral collection site (ie, Chioggia), where it is possible that samples may need to be stored for over 48 h (for example samples collected Friday but not tested until Monday), we adopted plasma preparation tubes (\textit{PPT}, Terumo Europe, Leuven, Belgium).

Figure 1 summarises sample processing in our laboratory. Briefly, during the pooling procedures, performing using a Tecan pipettor, back-up plates were prepared: these plates were stored at −80 °C and EDTA tubes were stored at +4 °C until the end of biological qualification process. After pooling and ultracentrifugation, using the Multiprep extraction procedures, the IC is added to 100µL of pooled samples. The standard extraction procedure adopted for B19-DNA recommends the use of a single sample, constituted of 200µL of plasma with the addition of 5µL of IC. At first, using a half volume sample (pooled) we added a half volume of IC (2.5µL). However, with this procedure, we obtained a very high prevalence (10-15%) of invalid MP, because of negativity of the IC. The decision to use a larger amount of IC (2.8µL) resolved this problem.

Both FDA and the European Pharmacopoeia require that plasma pools for the production of stable plasma derivates should not contain more than 10^4 UI/mL17,19,21. So, it is not as important to achieve the maximal sensitivity in NAT screening for B19-DNA as it is in NAT testing performed for HBV, HCV or HIV. We established that, by using the extraction procedure of B19-DNA from single plasma samples as recommended by manufacturers (high pure viral nucleic acid kit) or if nucleic acids were isolated from pooled plasma samples (Multiprep Specimen Processing procedure for preparation of mini-pool specimens), quantification of B19-DNA using the Light
Cycler Parvovirus B19 quantification kit showed a satisfactory sensitivity. Indeed, the 95% detection limit was 320UI/mL for the high-pure procedure performed on single samples and 60UI/mL for the Multiprep procedure performed on pooled samples, which are in good agreement with other published results. These detection limits are more than 2 log lower than the FDA and European requirements. To ensure that this sensitivity was maintained in every analytical session, despite the unavoidable slight variation due to use of various reactive batches, different technicians, modifications of devoted equipment etc., in each analytical session we added a multi-parametric run-control containing 10UI/mL for HBV-DNA, 20UI/mL for HCV-RNA, 50UI/mL for HIV-RNA and 150UI/mL of B19-DNA. This run-control is treated as one MP and extracted with the Multiprep Specimen Processing procedure. Both for MP and run-controls, the extract was divided into four aliquots: three were used for routine tri-NAT screening with the Ampliscreen System, while the fourth was stored frozen at –80 °C to perform B19-DNA screening.

The adoption of this run-control is a further guarantee that the analytical process, notwithstanding the modification of extraction procedures, not only ensures an optimal sensitivity but that is continuously under control. The fact that the run-control was correctly identified as positive in all the 26 analytical sessions is evidence of the robustness of our modified analytical procedure; moreover, the kit's controls were also correctly identified in all the analytical sessions. In conclusion, we did not observe any invalid analytical sessions. Among 629 MP, 31 (4.9%) gave an invalid result, due to negativity of the IC. The prevalence of invalid MP fell as the technicians' confidence with this new analytical method rose. Indeed, it was 8.2% in May 2005 and had dropped to 3.0% by November 2005. This prevalence of invalid MP is higher, but comparable with the prevalence observed for other NAT screens in our laboratory.

We observed nine initially reactive MP, of which five were repeatedly reactive; the prevalence of falsely positive results was 0.6%. The low prevalence of false positives confirms the method's robustness to cross contamination due to kit's characteristics, to the operative procedures followed in our laboratory, and to the employment of adequately trained technicians. For ethical reasons and in consideration of the low viral-load observed in positive MP, we assured that the positive pools and donations were not identified. The finding of MP with a low viral load conforms the good sensitivity of the methods. These detection limits are performed on pooled samples, which are in good agreement with other published results. These detection limits are more than 2 log lower than the FDA and European requirements. To ensure that this sensitivity was maintained in every analytical session, despite the unavoidable slight variation due to use of various reactive batches, different technicians, modifications of devoted equipment etc., in each analytical session we added a multi-parametric run-control containing 10UI/mL for HBV-DNA, 20UI/mL for HCV-RNA, 50UI/mL for HIV-RNA and 150UI/mL of B19-DNA. This run-control is treated as one MP and extracted with the Multiprep Specimen Processing procedure. Both for MP and run-controls, the extract was divided into four aliquots: three were used for routine tri-NAT screening with the Ampliscreen System, while the fourth was stored frozen at –80 °C to perform B19-DNA screening.

The adoption of this run-control is a further guarantee that the analytical process, notwithstanding the modification of extraction procedures, not only ensures an optimal sensitivity but that is continuously under control. The fact that the run-control was correctly identified as positive in all the 26 analytical sessions is evidence of the robustness of our modified analytical procedure; moreover, the kit's controls were also correctly identified in all the analytical sessions. In conclusion, we did not observe any invalid analytical sessions. Among 629 MP, 31 (4.9%) gave an invalid result, due to negativity of the IC. The prevalence of invalid MP fell as the technicians' confidence with this new analytical method rose. Indeed, it was 8.2% in May 2005 and had dropped to 3.0% by November 2005. This prevalence of invalid MP is higher, but comparable with the prevalence observed for other NAT screens in our laboratory.

We observed nine initially reactive MP, of which five were repeatedly reactive; the prevalence of falsely positive results was 0.6%. The low prevalence of false positives confirms the method's robustness to cross contamination due to kit's characteristics, to the operative procedures followed in our laboratory, and to the employment of adequately trained technicians. For ethical reasons and in consideration of the low viral-load observed in positive MP, we assured that the positive pools and donations were not identified. The finding of MP with a low viral load confirms the good sensitivity of the methods.

Conclusions

La mission di ciascun Servizio Trasfusionale è quella di provvedere a un supporto trasfusionale adeguato, sicuro ed efficace ai pazienti. Per raggiungere questo obiettivo, i Servizi Trasfusionale hanno adottato varie strategie: efficaci programmi di reclutamento dei donatori, accurata selezione dei donatori, screening microbiologici, virus inattivazione e implementazione dei test NAT per i più importati virus.
notwithstanding the modification. In fact, the viral load detected in MP constituted from 24 blood units was 50 UI/mL, 67UI/mL, 117UI/mL and 309UI/mL respectively. For these samples, showing a low level viraemia (under 1×10^4UI/mL), no action was required and plasma was regularly shipped to fractionation.

In our experience, with the hypothesis that, for each MP, the positivity for B19-DNA was caused by a single positive unit, the prevalence of donations positive for B19-DNA is 0.03% and none of these were highly viraemic. These results are intermediate, with regards to other reported prevalences: 0.56% among Dutch blood donors24, 0.12% among Portuguese blood donors25, 0.16% among Belgian blood donors13, 0.07% among blood donors in France29, and 0.01% among blood donors in Germany30.

In our experience, using the Multiprep Specimen Processing procedure and the Light Cycler Parvovirus B19 quantification kit, the time required for every analytical session (up to 29 MP + a run-control and the kit's control) was about 90 minutes: 20 minutes for set up the PCR, 60 minutes for PCR amplification, and 10 minutes for evaluation of the results. The financial cost for this screening, performed as described in this study, is around 1 Euro for each blood unit tested (0.50 Euro for reagents and 0.50 Euro for materials and analyser service).

Conclusions

The mission of every Transfusion Service is to provide adequate, safe and effective transfusional support to patients. In order to achieve this objective, Transfusion Services have implemented various strategies: effective donor recruitment programmes, careful donor selection, serological screening, virus inactivation, and implementation of NAT testing for the most relevant blood-borne viruses.

The results from this study demonstrate, in a medium size Transfusion Service, the feasibility of implementation of NAT screening with the introduction of a real-time PCR-based test for B19-DNA. It is important to emphasise two aspects of our study. First, NAT screening for B19-DNA was performed before the plasma was shipped for fractionation but after validation of labile blood products (platelets, red cell preparations, virus-inactivated plasma). Secondly, the real-time PCR test for B19-DNA was performed using an aliquot (stored at –80 °C) obtained from the multiprep extraction process used in NAT screening (Ampliscreen) for HBV-DNA, HCV-RNA and HIV-RNA.

Il Parvovirus umano B19 è in grado di contaminare con una certa frequenza gli emocomponenti e i plasmaderivati ed è stata dimostrata la possibilità di trasmissione per via trasfusionale. La inattivazione del virus è assai difficoltosa e di conseguenza le industrie di lavorazione del plasma hanno introdotto misure di screening tendenti alla riduzione del viral-load di B19-DNA nei plasma-pool mediante l'introduzione test NAT. L'obiettivo del presente studio è quello di valutare la fattibilità dello screening NAT per B19-DNA in un Servizio Trasfusionale e di valutare la prevalenza di donazioni positive nella nostra popolazione.

Materiali e Metodi. La determinazione quantitativa
With this two considerations, our opinion is that real-time PCR for B19-DNA is a technique that can be easily carried out and should be introduced into Blood Banks’ routine microbiological screening. A critical mass of about 50,000 bloods units each year is necessary, not only for rationalisation of the NAT screening test, but also for the activity linked to providing plasma for industrial fractionation, to meet the "Plasma Master File" criteria adopted in Europe.

In order to establish the real risk of transmission of Parvovirus infection through blood components and plasma derivative in Italy and the importance of the implementation of such technologies, it will be important to perform larger studies in different areas of the country, with a central coordination (possibly by a Scientific Society). A cost/benefit study should also be performed.

Results. The method modified by us adopted permits to reach a satisfactory sensitivity (detection limit 95% 60UI/mL) in mini-pool cited from 24 samples. We have examined 15,096 donations in 629 mini-pool. The prevalence of mini-pool invalid was 4.9%, 9 mini-pool resulted initially reactive, five resulted repetitively reactive, and none with a viral-load superior to 10⁴UI/mL. The prevalence of mini-pool positive for B19 DNA was 0.79%.

Conclusions. It is possible to test donations for B19-DNA in mini-pool of 24 samples for the aim of maintaining the viral load at or below the limits requested by the FDA and the European Pharmacopoeia. In the experience conducted by the authors, using the same procedure of extraction adopted for the screening NAT in mini-pool, it is possible to perform NAT screening for B19 before sending the plasma source to the industrial fractionation. The additional time required is about 90 minutes per analytical session, with the need to perform 3-4 sessions per month, the cost economic will be around 1 Euro per validated unit.
References