Abstract
Background - Pathogen reduction technology (PRT) may damage platelet (PLT) components. To study this, metabolic activity and haemostatic function of buffy coat (BC) PLT concentrates, with or without riboflavin and UV light PRT treatment, were compared.
Material and methods - Twenty-four BC PLT concentrates, leukoreduced and diluted in additive solution, were grouped into 12 type-matched pairs, which were pooled and divided into 12 non-PRT-treated BC PLT concentrates (control units) and 12 riboflavin and UV PRT-treated BC PLT concentrates (test units). Haemostatic function and metabolic parameters were monitored by thrombelastography at days 1, 3, 7 and 14 post collection in both PLT groups.
Results - Loss of PLT discoid shape, glucose consumption, lactate production, and decrease in pH were greater in the PRT-treated PLTs than in control PLTs over time (p<0.001). PLT haemostatic function evaluated by clot strength was also significantly weaker in PRT-treated PLTs compared with the excellent clot quality of control PLTs at day 7 (maximum amplitude: 41.27 vs 64.27; p<0.001), and even at day 14 (21.16 vs 60.39; p<0.001) of storage.
Discussion - Pathogen reduction technology treatment accelerates and increases platelet storage lesion, resulting in glucose depletion, lactate accumulation, PLT acidification, and discoid shape loss. The clots produced by control PLTs at day 14 were still remarkably strong, whereas at day 7 PRT-treated PLTs produced weaker clots compared to the control group. Clinical trials investigating the efficacy of PRT-treated PLTs transfused at the end of the storage period (day 7), when the in vitro clot strength is weaker, are needed.
Downloads
- Abstract viewed - 145 times
- PDF downloaded - 68 times