Abstract
Background - Among 710 RHD alleles, 3 alleles have been shown to express CcEe antigens and, among 67 hybrid alleles of the RHD gene, 2 alleles have evolved to include RHCE exons 4-9. No breakpoint region had been described for such RHD-CE(4-9)-D hybrid alleles. In the Kidd blood group system, the JK*02N.01 null allele is found with high prevalence in the Polynesian population. We investigated a self-identified Pacific Islander with discrepant serologic and molecular results for his C and Jkb antigens. Another 8 samples with genotype-phenotype discrepancies in the Kidd blood group system were assessed.
Materials and methods - A combination of published molecular methods and commercial kits were applied to analyze the RHD, RHCE, and SLC14A1 gene sequences, as were hemagglutination tests to determine the serologic phenotypes.
Results - Nucleotide sequencing of the RHD gene in the index case, including relevant intron stretches, and cDNA identified an RHD-CE(4-9)-D hybrid allele. Nucleotide sequencing of his RHCE gene confirmed the presence of 2 RHCE*ce alleles despite expressing the C antigen. Sequencing of his SLC14A1 gene documented the JK*02N.01 null allele. In the other 8 samples, 5 previously known SLC14A1 nucleotide substitutions were identified. The JK*02N.17 allele was determined to be Jkb-positive.
Discussion - We determined the 2 breakpoint regions of his RHD-CE(4-9)-D hybrid allele, which was likely distinct from the 2 previously published hybrid alleles due to the differences in the linked RHCE allele. His RHD variant was shown to express the C antigen. An SLC14A1 substitution was underlying his unexpected Jkb-negative phenotype. In a quality improvement project, we resolved 8 samples with similarly discrepant results between Jk serology and red cell genotyping.
- Abstract viewed - 532 times
- pdf downloaded - 258 times